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4.6 Ion Waves

In the absence of collisions, ordinary sound waves would not occur. Ions can still

transmit vibrations to each other because of their charge, however; and acoustic waves

can occur through the intermediary of an electric field. Since the motion of massive

ions will be involved, these will be low-frequency oscillations, and we can use the

plasma approximation of Sect. 3.6. We therefore assume ni¼ ne¼ n and do not use

Poisson’s equation. The ion fluid equation in the absence of a magnetic field is

Mn
∂vi

∂t
þ vi �∇ð Þvi

� �

¼ enE� ∇p ¼ �en∇ϕ�γiKTi∇n ð4:37Þ

We have assumed E¼�∇ ϕ and used the equation of state. Linearizing and

assuming plane waves, we have

�iωMn0vi1 ¼ �en0ikϕ1 � γiKTiikn1 ð4:38Þ

As for the electrons, we may assume m¼ 0 and apply the argument of Sect. 3.5,

regarding motions along B, to the present case of B¼ 0. The balance of forces on

electrons, therefore, requires

ne ¼ n ¼ n0 exp
eϕ1

KTe

� �

¼ n0 1þ
eϕ1

KTe

þ � � �

� �

The perturbation in density of electrons, and, therefore, of ions, is then

n1 ¼ n0
eϕ1

KTe

ð4:39Þ

Here the n0 of Boltzmann’s relation also stands for the density in the equilibrium

plasma, in which we can choose ϕ0¼ 0 because we have assumed E0¼ 0. In

linearizing Eq. (4.39), we have dropped the higher-order terms in the Taylor

expansion of the exponential.

The only other equation needed is the linearized ion equation of continuity.

From Eq. (4.22), we have

iωn1 ¼ n0ikvi1 ð4:40Þ

In Eq. (4.38), we may substitute for ϕ1 and n1 in terms of vi1 from Eqs. (4.39) and

(4.40) and obtain

iωMn0vi1 ¼ en0ik
KTe

en0
þ γiKTiik

� �

n0ikvi1

iω

ω2 ¼ k2
KTe

M
þ
γiKTi

M

� �
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ω

k
¼

KTe þ γiKTi

M

� �1=2

� vs ð4:41Þ

This is the dispersion relation for ion acoustic waves; υs is the sound speed in a

plasma. Since the ions suffer one-dimensional compressions in the plane waves we

have assumed, we may set γi¼ 3 here. The electrons move so fast relative to these

waves that they have time to equalize their temperature everywhere; therefore, the

electrons are isothermal, and γe¼ 1. Otherwise, a factor γe would appear in front of

KTe in Eq. (4.41).

The dispersion curve for ion waves (Fig. 4.12) has a fundamentally different

character from that for electron waves (Fig. 4.5). Plasma oscillations are basically

constant-frequency waves, with a correction due to thermal motions. Ion waves are

basically constant-velocity waves and exist only when there are thermal motions.

For ion waves, the group velocity is equal to the phase velocity. The reasons for this

difference can be seen from the following description of the physical mechanisms

involved. In electron plasma oscillations, the other species (namely, ions) remains

essentially fixed. In ion acoustic waves, the other species (namely, electrons) is far

from fixed; in fact, electrons are pulled along with the ions and tend to shield out

electric fields arising from the bunching of ions. However, this shielding is not

perfect because, as we saw in Sect. 1.4, potentials of the order of KTe/e can leak out

because of electron thermal motions. What happens is as follows. The ions form

regions of compression and rarefaction, just as in an ordinary sound wave. The

compressed regions tend to expand into the rarefactions, for two reasons. First, the

ion thermal motions spread out the ions; this effect gives rise to the second term in

the square root of Eq. (4.41). Second, the ion bunches are positively charged and

tend to disperse because of the resulting electric field. This field is largely shielded

out by electrons, and only a fraction, proportional to KTe, is available to act on the

ion bunches. This effect gives rise to the first term in the square root of Eq. (4.41).

The ions overshoot because of their inertia, and the compressions and rarefactions

are regenerated to form a wave.

The second effect mentioned above leads to a curious phenomenon. When KTi
goes to zero, ion waves still exist. This does not happen in a neutral gas (Eq. (4.36)).

The acoustic velocity is then given by

Fig. 4.12 Dispersion

relation for ion acoustic

waves in the limit of small

Debye length
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vs ¼ KTe=Mð Þ1=2 ð4:42Þ

This is often observed in laboratory plasmas, in which the condition Ti	 Te is a

common occurrence. The sound speed υs depends on electron temperature (because

the electric field is proportional to it) and on ion mass (because the fluid’s inertia is

proportional to it).

4.7 Validity of the Plasma Approximation

In deriving the velocity of ion waves, we used the neutrality condition ni¼ ne while

allowing E to be finite. To see what error was engendered in the process, we now

allow ni to differ from ne and use the linearized Poisson equation:

ε0∇ � E1 ¼ ε0k
2ϕ1 ¼ e ni1 � ne1ð Þ ð4:43Þ

The electron density is given by the linearized Boltzmann relation Eq. (4.39):

ne1 ¼
eϕ1

KTe

n0 ð4:44Þ

Inserting this into Eq. (4.43), we have

ε0ϕ1 k2 þ
n0e

2

ε0KTe

� �

¼ eni1 ð4:45Þ

ε0ϕ1 k2λ2D þ 1
� �

¼ eni1λ
2
D

The ion density is given by the linearized ion continuity equation (4.40):

ni1 ¼
k

ω
n0vi1 ð4:46Þ

Inserting Eqs. (4.45) and (4.46) into the ion equation of motion Eq. (4.38), we find

iωMn0vi1 ¼
enoik

ε0

eλ2D

1þ k2λ2D
þ γiKTiik

� �

k

ω
n0vi1

ω2 ¼
k2

M

n0e
2ε�1

0 λ2D

1þ k2λ2D
þ γiKTi

� �

ð4:47Þ

ω

k
¼

KTe

M

1

1þ k2λ2D
þ
γiKTi

M

� �1=2

ð4:48Þ
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This is the same as we obtained previously (Eq. (4.41)) except for the factor 1þ k2

λ2D: Our assumption ni¼ ne has given rise to an error of order k2λ2D ¼ 2πλD=λð Þ2:
Since λD is very small in most experiments, the plasma approximation is valid

everywhere except in a thin layer, called a sheath (Chap. 8), a few λD’s in thickness,

next to a wall.

4.8 Comparison of Ion and Electron Waves

If we consider these short-wavelength waves by taking k2λ2D 
 1; Eq. (4.47)

becomes

ω2 ¼ k2
n0e

2

ε0Mk2
¼

n0e
2

ε0M
� Ω2

p ð4:49Þ

We have, for simplicity, also taken the limit Ti! 0. Here Ωp is the ion plasma

frequency. For high frequencies (short wavelengths) the ion acoustic wave turns into

a constant-frequency wave. There is thus a complementary behavior between elec-

tron plasma waves and ion acoustic waves: the former are basically constant fre-

quency, but become constant velocity at large k; the latter are basically constant

velocity, but become constant frequency at large k. This comparison is shown

graphically in Fig. 4.13.

Experimental verification of the existence of ion waves was first accomplished

by Wong, Motley, and D’Angelo. Figure 4.14 shows their apparatus, which was

again a Q-machine. (It is no accident that we have referred to Q-machines so often;

careful experimental checks of plasma theory were possible only after schemes to

make quiescent plasmas were discovered.) Waves were launched and detected by

grids inserted into the plasma. Figure 4.15 shows oscilloscope traces of the

transmitted and received signals. From the phase shift, one can find the phase

velocity (same as group velocity in this case). These phase shifts are plotted as

Fig. 4.13 Comparison of the dispersion curves for electron plasma waves and ion acoustic waves
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This is the dispersion relation for ion acoustic waves; υs is the sound speed in a

plasma. Since the ions suffer one-dimensional compressions in the plane waves we

have assumed, we may set γi¼ 3 here. The electrons move so fast relative to these

waves that they have time to equalize their temperature everywhere; therefore, the

electrons are isothermal, and γe¼ 1. Otherwise, a factor γe would appear in front of

KTe in Eq. (4.41).

The dispersion curve for ion waves (Fig. 4.12) has a fundamentally different

character from that for electron waves (Fig. 4.5). Plasma oscillations are basically

constant-frequency waves, with a correction due to thermal motions. Ion waves are

basically constant-velocity waves and exist only when there are thermal motions.

For ion waves, the group velocity is equal to the phase velocity. The reasons for this

difference can be seen from the following description of the physical mechanisms

involved. In electron plasma oscillations, the other species (namely, ions) remains

essentially fixed. In ion acoustic waves, the other species (namely, electrons) is far

from fixed; in fact, electrons are pulled along with the ions and tend to shield out

electric fields arising from the bunching of ions. However, this shielding is not

perfect because, as we saw in Sect. 1.4, potentials of the order of KTe/e can leak out

because of electron thermal motions. What happens is as follows. The ions form

regions of compression and rarefaction, just as in an ordinary sound wave. The

compressed regions tend to expand into the rarefactions, for two reasons. First, the

ion thermal motions spread out the ions; this effect gives rise to the second term in

the square root of Eq. (4.41). Second, the ion bunches are positively charged and

tend to disperse because of the resulting electric field. This field is largely shielded

out by electrons, and only a fraction, proportional to KTe, is available to act on the

ion bunches. This effect gives rise to the first term in the square root of Eq. (4.41).

The ions overshoot because of their inertia, and the compressions and rarefactions

are regenerated to form a wave.

The second effect mentioned above leads to a curious phenomenon. When KTi
goes to zero, ion waves still exist. This does not happen in a neutral gas (Eq. (4.36)).

The acoustic velocity is then given by
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vs ¼ KTe=Mð Þ1=2 ð4:42Þ

This is often observed in laboratory plasmas, in which the condition Ti	 Te is a

common occurrence. The sound speed υs depends on electron temperature (because

the electric field is proportional to it) and on ion mass (because the fluid’s inertia is

proportional to it).

4.7 Validity of the Plasma Approximation

In deriving the velocity of ion waves, we used the neutrality condition ni¼ ne while

allowing E to be finite. To see what error was engendered in the process, we now

allow ni to differ from ne and use the linearized Poisson equation:

ε0∇ � E1 ¼ ε0k
2ϕ1 ¼ e ni1 � ne1ð Þ ð4:43Þ

The electron density is given by the linearized Boltzmann relation Eq. (4.39):
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This is the same as we obtained previously (Eq. (4.41)) except for the factor 1þ k2

λ2D: Our assumption ni¼ ne has given rise to an error of order k2λ2D ¼ 2πλD=λð Þ2:
Since λD is very small in most experiments, the plasma approximation is valid

everywhere except in a thin layer, called a sheath (Chap. 8), a few λD’s in thickness,

next to a wall.

4.8 Comparison of Ion and Electron Waves

If we consider these short-wavelength waves by taking k2λ2D 
 1; Eq. (4.47)

becomes

ω2 ¼ k2
n0e

2

ε0Mk2
¼

n0e
2

ε0M
� Ω2

p ð4:49Þ

We have, for simplicity, also taken the limit Ti! 0. Here Ωp is the ion plasma
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careful experimental checks of plasma theory were possible only after schemes to

make quiescent plasmas were discovered.) Waves were launched and detected by

grids inserted into the plasma. Figure 4.15 shows oscilloscope traces of the
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