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Types of plasmas
● (I) Classical plasma 

+ve ions / electrons / -ve ions / positrons

 
● (II) Dusty (complex) plasma 

+ve dust / -ve dust / +ve ions / electrons / -ve ions

● (III) Quantum plasma 

Electrons / positrons / holes / +ve ions
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Plasma applications & 
observations
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Forces in plasma
● Inertial force
● Electric force
● Magnetic force
● Pressure gradient force
● Collisional force
● Drag force
● Corilis force
● Ponderomotive force

● Viscosity 
● Tunnling force
● Exchange-correlation force
● Gravitational force
● Thermophoretic force
● Radiation pressure force
● Diffusion force
● 15 Forces 
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Types & Forces

● Classical 

● Dusty

● Quantum

● Inertial force
● Electric force
● Magnetic force
● Pressure gradient force
● Collisional force
● Drag force
● Corilis force
● Ponderomotive force
● Viscosity 
● Tunnling force
● Exchange-correlation force
● Gravitational force
● Thermophoretic force
● Radiation pressure force
● Diffusion force

Experiment

OR

Application

OR

Observation
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Types & Forces, cont.
What is the criteria to decide the leading force?

✔  Understanding each force → 15 forces

✔  Knowing the physics of the 

Exp. / App. / Obs. 

✔Select a suitable plasma type → 3 types
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● Why waves is important in plasma?
● Plasma models/theories
● Plasma components & Waves
● ESWs & EMWs
● Linear & Nonlinear theory
● Idea of perturbation
● Electrons oscillation & wave
● Ion wave 



This is a sinusoidally modulated wave (Fig. 4.1). The envelope of the wave, given

by cos [(Δk)x� (Δω)t], is what carries information; it travels at velocity Δω/Δk.

Taking the limit Δω! 0, we define the group velocity to be

vg ¼ dω=dk ð4:10Þ

It is this quantity that cannot exceed c.

4.3 Plasma Oscillations

If the electrons in a plasma are displaced from a uniform background of ions,

electric fields will be built up in such a direction as to restore the neutrality of the

plasma by pulling the electrons back to their original positions. Because of their

inertia, the electrons will overshoot and oscillate around their equilibrium positions

with a characteristic frequency known as the plasma frequency. This oscillation is

so fast that the massive ions do not have time to respond to the oscillating field and

may be considered as fixed. In Fig. 4.2, the open rectangles represent typical

elements of the ion fluid, and the darkened rectangles the alternately displaced

elements of the electron fluid. The resulting charge bunching causes a spatially

periodic E field, which tends to restore the electrons to their neutral positions.

We shall derive an expression for the plasma frequency ωp in the simplest case,

making the following assumptions: (1) There is no magnetic field; (2) there are no

thermal motions (KT¼ 0); (3) the ions are fixed in space in a uniform distribution;

(4) the plasma is infinite in extent; and (5) the electron motions occur only in the

x direction. As a consequence of the last assumption, we have

∇ ¼ x̂∂=∂x E ¼ Ex̂ ∇� E ¼ 0 E ¼ �∇ϕ ð4:11Þ

There is, therefore, no fluctuating magnetic field; this is an electrostatic oscillation.

The electron equations of motion and continuity are

mne
∂ve

∂t
þ ve � ∇ð Þve

� �

¼ �eneE ð4:12Þ

Fig. 4.1 Spatial variation of the electric field of two waves with a frequency difference
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∂ne

∂t
þ ∇ � neveð Þ ¼ 0 ð4:13Þ

The only Maxwell equation we shall need is the one that does not involve B:

Poisson’s equation. This case is an exception to the general rule of Sect. 3.6 that

Poisson’s equation cannot be used to find E. This is a high-frequency oscillation;

electron inertia is important, and the deviation from neutrality is the main effect in

this particular case. Consequently, we write

ε0∇ � E ¼ ε0∂E=∂x ¼ e ni � neð Þ ð4:14Þ

Equations (4.12)–(4.14) can easily be solved by the procedure of linearization.

By this we mean that the amplitude of oscillation is small, and terms containing

higher powers of amplitude factors can be neglected. We first separate the depen-

dent variables into two parts: an “equilibrium” part indicated by a subscript 0, and a

“perturbation” part indicated by a subscript 1:

ne ¼ n0 þ n1 ve ¼ v0 þ v1 E ¼ E0 þ E1 ð4:15Þ

The equilibrium quantities express the state of the plasma in the absence of the

oscillation. Since we have assumed a uniform neutral plasma at rest before the

electrons are displaced, we have

∇n0 ¼ v0 ¼ E0 ¼ 0 ð4:16Þ

∂n0

∂t
¼ ∂v0

∂t
¼ ∂E0

∂t
¼ 0

Fig. 4.2 Mechanism of plasma oscillations
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Equation (4.12) now becomes

ð4:17Þ

The term (v1 · ∇)v1 is seen to be quadratic in an amplitude quantity, and we shall

linearize by neglecting it. The linear theory is valid as long as |v1| is small enough

that such quadratic terms are indeed negligible. Similarly, Eq. (4.13) becomes

ð4:18Þ

In Poisson’s equation (4.14), we note that ni0¼ ne0 in equilibrium and that ni1¼ 0

by the assumption of fixed ions, so we have

ε0∇ � E1 ¼ �en1 ð4:19Þ

The oscillating quantities are assumed to behave sinusoidally:

v1 ¼ v1e
i kx�ωtð Þx̂

n1 ¼ n1 e
i kx�ωtð Þ ð4:20Þ

E ¼ E1 e
i kx�ωtð Þx̂

The time derivative ∂/∂t can therefore be replaced by �iω, and the gradient ∇ by

ikx̂ : Equations (4.17)–(4.19) now become

�imωv1 ¼ �eE1 ð4:21Þ

�iωn1 ¼ �n0ikv1 ð4:22Þ

ikε0E1 ¼ �en1 ð4:23Þ

Eliminating n1 and E1, we have for Eq. (4.21)

�imωv1 ¼ �e
�e

ikε0

�n0ikv1

�iω
¼ �i

n0e
2

ε0ω
v1 ð4:24Þ

If v1 does not vanish, we must have

ω2 ¼ n0e
2=mε0
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The plasma frequency is therefore

ω p ¼
n0e

2

ε0m

� �1=2

rad= sec ð4:25Þ

Numerically, one can use the approximate formula

ω p=2π ¼ fp � 9
ffiffiffi

n
p

n in m�3
� �

ð4:26Þ

This frequency, depending only on the plasma density, is one of the fundamental

parameters of a plasma. Because of the smallness of m, the plasma frequency is

usually very high. For instance, in a plasma of density n¼ 1018 m�3, we have

fp � 9 1018
� �1=2 ¼ 9� 109 sec �1 ¼ 9GHz

Radiation at fp normally lies in the microwave range. We can compare this with

another electron frequency: ωc. A useful numerical formula is

fce ’ 28GHz=Tesla ð4:27Þ

Thus if B� 0.32 T and n� 1018 m�3, the cyclotron frequency is approximately

equal to the plasma frequency for electrons.

Equation (4.25) tells us that if a plasma oscillation is to occur at all, it must have a

frequency depending only on n. In particular, ω does not depend on k, so the group

velocity dω/dk is zero. The disturbance does not propagate. How this can happen can

bemade clear with amechanical analogy (Fig. 4.3). Imagine a number of heavy balls

suspended by springs equally spaced in a line. If all the springs are identical, each

ball will oscillate vertically with the same frequency. If the balls are started in the

proper phases relative to one another, they can be made to form a wave propagating

in either direction. The frequency will be fixed by the springs, but the wavelength

can be chosen arbitrarily. The two undisturbed balls at the ends will not be affected,

and the initial disturbance does not propagate. Either traveling waves or standing

waves can be created, as in the case of a stretched rope. Waves on a rope, however,

must propagate because each segment is connected to neighboring segments.

Fig. 4.3 Synthesis of a wave from an assembly of independent oscillators
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This analogy is not quite accurate, because plasma oscillations have motions in

the direction of k rather than transverse to k. However, as long as electrons do not

collide with ions or with each other, they can still be pictured as independent

oscillators moving horizontally (in Fig. 4.3). But what about the electric field?

Won’t that extend past the region of initial disturbance and set neighboring layers of

plasma into oscillation? In our simple example, it will not, because the electric field

due to equal numbers of positive and negative infinite plane charge sheets is zero. In

any finite system, however, plasma oscillations will propagate. In Fig. 4.4, the

positive and negative (shaded) regions of a plane plasma oscillation are confined in

a cylindrical tube. The fringing electric field causes a coupling of the disturbance to

adjacent layers, and the oscillation does not stay localized.

Problems

4.2 The plasma density in the lower ionosphere has been measured during satellite

re-entry to be about 1018m�3 at 50 km altitude, 1017 at 70 km, ad 1014 at 85 km.

What are the plasma frequencies there?

4.3 Calculate the plasma frequency with the ion motions included, thus justifying

our assumption that the ions are essentially fixed. (Hint: include the term n1i in

Poisson’s equation and use the ion equations of motion and continuity.)

4.4 For a simple plasma oscillation with fixed ions and a space-time behavior exp[i

(kx�ωt)], calculate the phase δ for ϕ1, E1, and v1 if the phase of n1, is zero.

Illustrate the relative phases by drawing sine waves representing n1, ϕ1, E1, and

v1 (a) as a function of x at t¼ 0, (b) as a function of t at x¼ 0 for ω/k> 0, and

(c) as a function of t at x¼ 0 for ω/k< 0. Note that the time patterns can be

obtained by translating the x patterns in the proper direction, as if the wave

were passing by a fixed observer.

4.5 By writing the linearized Poisson’s equation used in the derivation of simple

plasma oscillations in the form

∇ � εEð Þ ¼ 0

derive an expression for the dielectric constant ε applicable to high-frequency

longitudinal motions.

Fig. 4.4 Plasma oscillations propagate in a finite medium because of fringing fields
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4.4 Electron Plasma Waves

There is another effect that can cause plasma oscillations to propagate, and that is

thermal motion. Electrons streaming into adjacent layers of plasma with their

thermal velocities will carry information about what is happening in the oscillating

region. The plasma oscillation can then properly be called a plasma wave. We can

easily treat this effect by adding a term �∇pe to the equation of motion Eq. (4.12).

In the one-dimensional problem, γ will be three, according to Eq. (3.53). Hence,

∇ pe ¼ 3KTe∇ne ¼ 3KTe∇ n0 þ n1ð Þ ¼ 3KTe

∂n1

∂x
x̂

and the linearized equation of motion is

mn0
∂v1

∂t
¼ �en0E1 � 3KTe

∂n1

∂x
ð4:28Þ

Note that in linearizing we have neglected the terms n1 ∂v1/∂t and n1E1 as well

as the (v1 · ∇)v1 term. With Eq. (4.20), Eq. (4.28) becomes

�imωn0v1 ¼ �en0E1 � 3KTeikn1 ð4:29Þ

E1 and n1 are still given by Eqs. (4.23) and (4.22), and we have

imωn0v1 ¼ en0
�e

ikε0

� �

þ 3KTeik

� �

n0ik

iω
v1

ω2v1 ¼
n0e

2

ε0m
þ 3KTe

m
k2

� �

v1

ω2 ¼ ω2
p þ

3

2
k2v2th ð4:30Þ

where v2th � 2KTe=m: The frequency now depends on k, and the group velocity

is finite:

2ωdω ¼ 3

2
v2th2k dk

vg ¼
dω

dk
¼ 3

2

k

ω
v2th ¼

3

2

v2th
vϕ

ð4:31Þ

That vg is always less than c can easily be seen from a graph of Eq. (4.30). Figure 4.5

is a plot of the dispersion relation ω(k) as given by Eq. (4.30). At any point P on

this curve, the slope of a line drawn from the origin gives the phase velocity ω/k.
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The slope of the curve at P gives the group velocity. This is clearly always less than

(3/2)1/2 vth, which, in our nonrelativistic theory, is much less than c. Note that at

large k (small λ), information travels essentially at the thermal velocity. At small

k (large λ), information travels more slowly than vth even though vϕ is greater than

vth. This is because the density gradient is small at large λ, and thermal motions

carry very little net momentum into adjacent layers.

The existence of plasma oscillations has been known since the days of Langmuir

in the 1920s. It was not until 1949 that Bohm and Gross worked out a detailed

theory telling how the waves would propagate and how they could be excited.

A simple way to excite plasma waves would be to apply an oscillating potential to a

grid or a series of grids in a plasma; however, oscillators in the GHz range were not

generally available in those days. Instead, one had to use an electron beam to excite

plasma waves. If the electrons in the beam were bunched so that they passed by any

fixed point at a frequency fp, they would generate an electric field at that frequency

and excite plasma oscillations. It is not necessary to form the electron bunches

beforehand; once the plasma oscillations arise, they will bunch the electrons, and

the oscillations will grow by a positive feedback mechanism. An experiment to test

this theory was first performed by Looney and Brown in 1954. Their apparatus was

entirely contained in a glass bulb about 10 cm in diameter (Fig. 4.6). A plasma

filling the bulb was formed by an electrical discharge between the cathodes K and

an anode ring A under a low pressure (3� 10�3 Torr) of mercury vapor. An electron

beam was created in a side arm containing a negatively biased filament. The emitted

electrons were accelerated to 200 V and shot into the plasma through a small hole.

A thin, movable probe wire connected to a radio receiver was used to pick up the

oscillations. Figure 4.7 shows their experimental results for f2 vs. discharge current,

which is generally proportional to density. The points show a linear dependence, in

rough agreement with Eq. (4.26). Deviations from the straight line could be

attributed to the k2v2th term in Eq. (4.30). However, not all frequencies were

observed; k had to be such that an integral number of half wavelengths fit along

Fig. 4.5 Dispersion relation for electron plasma waves (Bohm–Gross waves)
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