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What 1s Turbulence

ACauses mentioned are calledrivino

DrivingA large scaléy Drives'®hao£
++Pissipatior(scale

A Muchsmaller

A Where things are ordered again

From CBC

Turbulence
AExtremely hard to describe in detail, but easy to understand!

AANd is very familiat and (quasi) universal
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To start:InviscidFluids

AMass Conservatioifcontinuity eq.):

Mass flux from small unitol

Oip = —Vy-(pu) _ . .
In fixed'Buleriarfroordinates
wherevelyu = u (X)

AMomentum Conservatior(Euler eq.):
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AF=ma =duwt! A appears simple BUfighly nonlinear
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In General
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Viscosity Includes Shearing FoseBissipation

AGradients of (0 ) A Isotropic Pressure Forces

AGradients of ” (0 U )

AExample: Incompressible Newtonian Fluid
A Viscous force arises from shear stress:
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A Frictional Forces POSSibdl@ote averages ovetomicparticles important)
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(Estimate_: particle passing through balls s ofossectionalA O A Avill likely encounter

one ball when N (ball per unit V) A O O O @A @
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NavierStokes Eqg. and Reynolds NumSSEsSse

In general Ao 3
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++ Neglect pressure and external forces and dehi,ine%

AT 0 ¢ 8 u A Restoring .VS. Inertial Force
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Basic Interpretation

Systenforced, such that;time to restore to rest via viscosity
long compared to crossing time
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++EXcited degrees of freedomoupled
A complexbehaviour



Kolmogoro® Basiénsight Universality

AThere are two scales to the problem

1- The scale at which we drive
2- The scale at which energy dissipates< L

A Between these two the systemssale freeA Described byower law.
With the central characteristids=e)" = o"

A Basic characteof complicated systeraimple: By dimensional analysis!



Powerful Consequences

Aln intermediate Whertial rangeCenergy transferred imascadegrom L to d
AWith little loss or time dependence

A Specific energ at intermediate scalé conserved ++ energy flow
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How is energdistributedamongscale8

AFourier. A powerful method ofinalyzingfields on different scales
If a fieldFis periodic in L you can expand
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CardiogramA

Periodic Signal
MTnameset. al.2002

Power Spectral Density

Let LX A number modes increases arbitrardy continuity A

q.) (T) C@@Q Q / White noise

There are different conventions and L does not appegd@wWer spectra=| FrequencyA




