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Motivation

Studying the effect of pressure, applied voltage, frequency and
magnetic field on the properties of the formed plasma.

Studying the conditions for the transition from neutral plasma
to non-neutral plasma.

Studying the possibility of generating sound waves for ions
and generating soliton waves when moving from the neutral
plasma to the non-neutral plasma.



Plasma definition

> Plasma is considered as States of Matter
fourth state of matter and
Its quasi neutral gas with
collective behaviour.
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Gas Discharge
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discharge discharge
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coupled plasma
Discharge
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Industrial applications
« Plasma etching.
* Plasma assisted

Medical applications |
 Prostate cancer

treatment . \ cutting.
* Living tissues . Pr_ocessmg of
treatment. \ semiconductors .

« Manufacture of (IC)

Other applications

» Surface preparation.
 Beam forming plasma antenna .
~+ Atmospheric pressure plasma
\ jet.
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Plasma modeling and simulation

Equivalent circuit models Fluid models Kinetic models
Monte Carlo PIC
Simulation Simulation



Particle in cell simulation
(PIC)

» The code solves the equation of motion of the plasma
superparticles in a self-consistent way with Poisson's
equations assuming electrostatic approximation; Collisions,
e.g., elastic scattering and charge exchange.



PIC simulation parameters for He
RF-CCP

» The distance between the two planar electrodes is 15 cm and
the gap size is discretized into 259 grids.

» The initial ion and electron temperatures are 300 K and 50000
K, respectively.

» The voltages of the frequencies change, where the total is
constant, . Vg + V; = 500V

» The simulation runs for 500 RF periods of the 60 MHZ cycles.

» The simulation stops when there is no variation in the number
of superparticles in the entire discharge, i.e., steady state.
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PIC simulation parameters for Ar
RF-CCP

» The distance between the two planar electrodes is 5 cm and the
gap size is discretized into 129 grids.

» The initial ion and electron temperatures are 300 K and 50000
K, respectively.

» The simulation runs for 5000 RF periods of the 60 MHZ
cycles.

» The driven frequencies are 60 MHz and 1 MHz,

Ver = Vo Sin(2m60MHzt) + Vsin(2mMHzt).

» The voltages of the frequencies change, where the total is

constant, . Vo + V; = 500V
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» The broadening of the ion energy distribution increases by
Increasing the amplitude of the 1 MHz signal.

» This allows more processes that would take place at the
substrate. In addition, still most of ions hit the target close to
normal incidence as in cases (1) and (3).




lon Acoustic modes and solitons

» The intermediate radio frequency regime holds the
Inequality wye >> wrp = wy; .

Where w,., wgr and w,; are the electron plasma frequency,

the radio frequency and the ion plasma frequency,
respectively.

> In this regime, electrons follow the RF sheath field and
the assumption of Boltzmann distribution for electrons is
valid.

» lons cross the sheath with a transit time comparable to the
RF period, consequently, their inertia allow them to
partially interact with the instantaneous RF sheath field.




» The fluid dynamics of collisionless sheath could be
merely summarized with Poisson's equation as follows:
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» By making the normalization by using:

r = xAp, t = t/wpp, © — u.\/TE/-m.i: n — N,

E = ET./e\p, and & = 8T, fe. \p = /s

nipe?
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02 \
O = wgp/Wp;- Wgp and wy; = ’:“;fl are RF frequency and the ion plasma
0"t

frequency, respectively.u = % IS the ratio of the electron density to the ion

density.

» The dispersion relation which is derived when p = 1 is belong to the plasma
bulk. But for the sheath,u < 1.

> Let expand the dynamical quantities using 4 (x,t) = A(x) + 6 A (x,t),
where A(x) is the zero-order component and & A(x, t) is the first order

component. The linearization and assuming d4 ~ exp (iwt) yield:
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For a plasma with a homogeneous zero order dynamical quantities
and holds the quasi-neutrality as in the plasma bulk,
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Letting du; ~ exp(—1kz), we obtain the dispersion relation
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This is the dispersion relation, By making analysis to the last equation
We can solve it by K or w but K has 4 roots and w has 2 roots , so we will continue

with w f
;li‘-g'ﬁ-i + }if'ﬁ-iﬂi T ﬁlil\/l + kg/ﬁ'i
Q(’fz + 'ﬁ.i)

w12 =



ui o

» The roots in the plasma bulk: (Left) for a frequency of
0.04 w,; and (Right) for a frequency of 0.99 w,;.

» In the left panel, Re(k,) and Re(k,) are congruent for speeds
greater than ~ 0.85.
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The roots in the plasma sheath: (Left) for a frequency of 0:04 wp; and

(Right) for a frequency of 0.99 w;.

> In the plasma Bulk we assumed that K ranged between

0.04 u)pito 0.99 wpi

» Noticed that K has to parts ( real and imaginary ) and inside the

sheath imaginary part =0

> In o analysis it is a real value because it is a stable system.



» This is the dispersion relation , By making analysis to the
last equation

A‘H'ﬂ-i + knsu; 'ﬂ-i’ﬁ-\f 1+ ATEffﬂ'i
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w12 =

» It is clear that no complex w is obtained for real k so that
all modes described by the dispersion relation are stable.
We can solve it by K or w but K has 4 roots and w has 2 roots
, so we will continue with .
» In the normalized frame, if the ion density n;(x) = 1
and u; = —1, QQ =1, then the dispersion relation can be
approximately simplified into:

W19 =~ —(A + l)
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Is there a soliton?

* By solving the equations by the sagdeev’s method.

s = x- Mt,where M is (Mach number). =0, u;=-1,n;=1
and multiply it by %p then integral over

S GD? + V(@) = 0

where the first term plays the role of kinetic energy, while the second term represents
the potential energy which known as Sagdeev potential and is given by




The conditions for the existance of soliton waves are (i) The potential V() has the
d*V(p)
dé?

maximum value if < 0 aty = 0. This condition yields the inequality

.
(MQ+1)

5 — <0

(i1) The existance of soliton waves requires also V(@pax) = 0, where the maximum

2

potential . is determined by pn.x = %(ﬂ-ﬂf (0 + 1)=. This implies the following

inequality
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Figure (Left) Variation of Sagdeev potential versus electrostatic potential.

(Right) The profiles for the soliton wave against the normalized spatial coordinate. Here, (2
= 1, L =0.9533, and M = 0.5451, M = 0.5588, and M = 0.5757 for red line, blue line, and

black line, respectively.
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The conditions for the transition from neutral
plasma to non-neutral plasma in plasma jet at

atmospheric pressure
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The conditions for the transition from

neutral plasma to non-neutral plasma
in CCP

« At different pressure 2 pa, 3 pa,4 pa,5 pa and 6 pa respectively,
plasma bulk not excited at small pressure as shown in the next
figures
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Conclusion

» The broadening of the ion energy distribution at the substrate
exist when using intermediate radiofrequencies in the range of
1MHz.

» This help in controlling etching, deposition and sputtering.

» The broadening has been represented in terms of excitation of
lon acoustic waves and soliton.

» At small pressure plasma bulk not found.



Plasma Sources Science and Technology

ACCEPTED MAMUSCRIPT

The ion transit effects on the sheath dynamics inthe
intermediate radiofrequency regime: excitationsof ion-
acoustic waves and solitons

Mohammed Shihab’ . Aya Elbadawy?, Nabil Elsiragy® and Mahmoud Saad Afify?
Accepted Manuscript online 24 Movember 2021 - © 2021 1OP Publishing Ltd

Abstract

The capacitively coupled plasma is investigated kinetically utilizing the particle- in-cell technigue. The
Argon (Ar) plasma is generated via two radio-frequencies. The plasma bulk density increases by
increasing the voltage amplitude of the high freguency (= 13.56 MHz) which is much greater than the
ion plasma freguency. The intermediate radio-frequencies { = 1 MHz) which are comparable to the ion
plasma frequency causes a broadening of the ion energy distribution considerably, i.e., ions gain
energies above and lower than the time-averaged energy. The good agreement between published
experimeaental results and our theoretical calculations via the Ensemble- in-Spacetime model confirms
the modulation of ions around time-averaged values. Intermediate frequencies allow ions to respond
partially to the instantaneous electric field. The response of ions to the instantaneocus electric field is
investigated semi- analytically. The dispersion relation of the plasma sheath and bulk are derived.
Stable ion acoustic modes are found. The ion-acoustic modes hawve two different velocities and carry
energy from the sheath edge to the electrode. Also, intermediate frequencies excite solitons in the
plasma sheath; the results may help to explain the ion density, flux, and energy modulation, and,

consequently, the broadening of the ion energy distribution.
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Abstract

Radio-frequency-driven atmospheric pressure plasma jets (REF APPIs) play an essential role in
many technological applications. This work studies the characteristics of these discharges in
the so-called non-neutral regime where the conventional structure of a quasi-neutral bulk and
an electron depleted sheath does not develop, and the electrons are instead organized in a
drift-soliton-like structure that never reaches quasi-neutrality. A hybrid particle-in-cell/Monte
Carlo collisions (PIC/MCC) simulation is set up, which combines a fully Kinetic electron
model via the PIC/MCC algorithm with a drift-diffusion model for the ions. In addition, an
analytical model for the electron dynamics is formulated. The formation of the soliton-like
structure and the connection between the soliton and the electron dynamics are investigated.
The location of the electron group follows a drift equation, while the spatial shape can be
described by Poisson—Boltzmann equilibrium in a co-moving frame. A stability analysis is
conducted using the Lyapunov method and a lincar stability analysis. A comparison of the
numerical simulation with the analytical models yields a good agreement.
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