



# Types of Plasma and the Related Forces

Waleed Moslem

Professor of Theoretical Plasma Physics

#### Aim of the lecture

Types of plasma → Different forces in plasma

How to select a sutaible model for your study

Advantage & disadvantage of each model

Taking notes → discuss with me after the lecture OR by email wmmoslem@hotmail.com

#### Outline

#### PART (I)

- Types of plasmas
- How many forces exist in plasma...!!

#### PART (II)

- Single particle model
- Kinetic model
- Multi-fluid model
- MHD model

#### Outline

#### PART (I)

- Types of plasmas
- How many forces exist in plasma...!!

#### PART (II)

- Single particle model
- Kinetic model
- Multi-fluid model
- MHD model

## Types of plasmas

• (I) Classical plasma

+ve ions / electrons / -ve ions / positrons

• (II) Dusty (complex) plasma

+ve dust / -ve dust / +ve ions / electrons / -ve ions

• (III) Quantum plasma

Electrons / positrons / holes / +ve ions

#### Types of plasmas, cont.







Irving Langmuir 1927

Padma Kant Shukla 1990

Giovanni Manfredi 2000

#### Outline

#### PART (I)

- Types of plasmas
- How many forces exist in plasma...!!

#### PART (II)

- Single particle model
- Kinetic model
- Multi-fluid model
- MHD model

#### Forces in plasma

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force
- **15 Forces**

# Types & Forces

ExperimentClassical

OR

Dusty

**Application** 

OR

Quantum

**Observation** 

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force
- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force

**Diffusion force** 

9/38

## Types & Forces, cont.

What are the criteria to decide the leading force?

**✓** Understanding each force → 15 forces

✓ Knowing the physics of the Exp. / App. / Obs.



✓ Select a suitable plasma type  $\rightarrow$  3 types

#### Classical Plasma

- Mainly → +ve ions & electrons
- Sometimes → -ve ions & positrons
- $1927 \rightarrow \text{now}$
- Applications / observations / Experiment → laboratory, space plasma, astrophyical plasma

## **Dusty Plasma**

- Dust particles in plasmas →
   particles have different sizes
   → a few nanometers to tens
   of micrometers
- First observations →
   interstellar space, planetary
   atmospheres, ring structures,
   cometary tails, ...etc
- 1960's,  $\rightarrow 1980$ 's
- It is a time for theoreticians → ????





- Padma K. Shukla and his collaborators predicted the existence of dust acoustic waves, dust ion acoustic waves and shocks....etc.
- His interest:
- (1)Physics of low- and high-temperature plasma
- (2) Nonlinear quantum plasma physics
- (3) Nonlinear space and astroplasmas
- (4)Nonlinear processes in geophysical flows
- (5) Collective interactions in dusty plasmas
- (6)Intense laser-plasma interactions
- (7) Plasma high-energy charged particle accel.
- (8) Nonlinear photonics/optics



Padma Kant Shukla 1950 – 2013 (India-Germany) Member of The Royal Swedish Academy of Science

Planet. Space Sci., Vol. 38, No. 4, pp. 543-546, 1990 Printed in Great Britain.

#### **DUST-ACOUSTIC WAVES IN DUSTY PLASMAS**

N. N. RAO,\* P. K. SHUKLA and M. Y. YU

Physica Scripta. Vol. 45, 508, 1992.

#### **Dust Ion-Acoustic Wave**

P. K. Shukla\* and V. P. Silin†

 Xu et al 1992 → modifay the Q-machine to allow the dispersal of dust grains over a portion of the cylindrical plasma column

 Chu and I 1994 → for the first time a dusty plasma has been confined in a cylindrical symmetric rf plasma system

Phys. Plasmas 2 (10), October 1995

Laboratory observation of the dust-acoustic wave mode

A. Barkan, R. L. Merlino, and N. D'Angelo

Planet. Space Sci., Vol. 44, No. 3, pp. 239–242, 1996

Experiments on ion-acoustic waves in dusty plasmas

A. Barkan, N. D'Angelo and R. L. Merlino













0.1 mm





Movie

- Moving dust in fusion devices →
   Movie
- Semiconductor industry
- Plasma chemistry and nanotechnology → coagulation of macroparticles
- Crystal physics

Table 1.8. The basic differences between the solid and dusty plasma crystals.

| Characteristics                                 | Solid-state crystal                    | Dusty plasma crystal              |
|-------------------------------------------------|----------------------------------------|-----------------------------------|
| Crystal type Interaction energy Lattice spacing | atomic crystals<br>a few eV<br>∼0.1 nm | dust crystals<br>~900 eV<br>~1 mm |





Table 1.1. The basic differences between electron—ion and dusty plasmas.

| Characteristics                                                                                                                                                                                               | Electron-ion plasma                                                                                                                                                                         | Dusty plasma                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quasi-neutrality condition Massive particle charge Charge dynamics Massive particle mass Plasma frequency Debye radius Particle size $E \times B_0$ particle drift Linear waves Nonlinear effects Interaction | $n_{e0} = Z_i n_{i0}$ $q_i = Z_i e$ $q_i = \text{constant}$ $m_i$ $\omega_{\text{pi}}$ $\lambda_{\text{De}}$ uniform ion drift at low $B_0$ IAW, LHW, etc IA solitons/shocks repulsive only | $Z_{\rm d}n_{\rm d0} + n_{\rm e0} = Z_{\rm i}n_{\rm i0}$<br>$ q_{\rm d}  = Z_{\rm d}e \gg q_{\rm i}$<br>$\partial q_{\rm d}/\partial t = {\rm net~current}$<br>$m_{\rm d} \gg m_{\rm i}$<br>$\omega_{\rm pd} \ll \omega_{\rm pi}$<br>$\lambda_{\rm Di} \ll \lambda_{\rm De}$<br>dust size distribution<br>dust drift at high $B_0$<br>DIAW, DAW, etc<br>DA/DIA solitons/shocks<br>attractive between grains |
| Crystallization Phase transition                                                                                                                                                                              | no crystallization no phase transition                                                                                                                                                      | dust crystallization phase transition                                                                                                                                                                                                                                                                                                                                                                       |

Debye shielding

$$\lambda_{\rm D} = \frac{\lambda_{\rm De} \lambda_{\rm Di}}{\sqrt{\lambda_{\rm De}^2 + \lambda_{\rm Di}^2}}$$

$$\lambda_{\rm De} = (k_{\rm B}T_{\rm e}/4\pi n_{\rm e0}e^2)^{1/2}$$
 and  $\lambda_{\rm Di} = (k_{\rm B}T_{\rm i}/4\pi n_{\rm i0}e^2)^{1/2}$ 

- -ve dust  $\rightarrow$  what happen?
- +ve dust  $\rightarrow$  what happen?

Dust plasma frequency

$$\omega_{\rm pd} = (4\pi n_{\rm d0} Z_{\rm d}^2 e^2/m_{\rm d})^{1/2}$$

• Dust-in-plasma & Dusty plasma  $\rightarrow$  G.W.

• Intergrain distance & Debye length

• Intergrain distance > Debye length  $\rightarrow$  ??

• Intergrain distance < Debye length  $\rightarrow$  ??

• Dust-in-plasma & Dusty plasma  $\rightarrow$  G.W.

• Intergrain distance & Debye length

• Intergrain distance > Debye length → Dust-in-plasma

• Intergrain distance < Debye length → Dusty plasma

## Example

$$Z_d \approx 10^3$$
,  $m_d \approx 2 \times 10^{-12}$  g,  $n_{d0} \approx 10^{-9}$ cm<sup>-3</sup>

$$T_e \approx 5 - 22 \text{ eV}, T_i \approx 60 - 120 \text{ eV}, n_{e0} \approx 1 - 23 \times 10^3 \text{cm}^{-3}$$

#### **Calculate**

- Debye length
- Dust frequency
- Intergrain distance
- Type of plasma (dust-in-plasma or dusty plasma)
- Possible observation



## **Leading Forces**

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

- Inertial force
- Electric force
- Magnetic force
- Pressure gradient force
- Collisional force
- Drag force
- Corilis force
- Ponderomotive force

- Viscosity
- Tunnling force
- Exchange-correlation force
- Gravitational force
- Thermophoretic force
- Radiation pressure force
- Diffusion force

# Plasma applications & observations



36/38

# Plasma applications & observations, cont.



# Finally ....!!!!!

#### End of Part I

Thanks