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Introduction

Defination: a special class of gases made up of a large number of electrons
and ionized atoms and molecules, in addition to neutral atoms and molecules
as are present in a normal (non-ionized) gas.

Aim: Studing the dynamics (Knowing the position and velocity at instant
time t) of the plasma

Models: Depending on the density of charged particles, a plasma behaves
either as a fluid, with collective effects being dominant, or as a collection of
individual particles.

I- Single-particle model.

II- Kinetic model.

III- Fluid model.

elkamashi@gmail.com (MU) Plasma modeling February 29, 2020 2 / 25



Introduction

Defination: a special class of gases made up of a large number of electrons
and ionized atoms and molecules, in addition to neutral atoms and molecules
as are present in a normal (non-ionized) gas.

Aim: Studing the dynamics (Knowing the position and velocity at instant
time t) of the plasma

Models: Depending on the density of charged particles, a plasma behaves
either as a fluid, with collective effects being dominant, or as a collection of
individual particles.

I- Single-particle model.

II- Kinetic model.

III- Fluid model.

elkamashi@gmail.com (MU) Plasma modeling February 29, 2020 2 / 25



Introduction

Defination: a special class of gases made up of a large number of electrons
and ionized atoms and molecules, in addition to neutral atoms and molecules
as are present in a normal (non-ionized) gas.

Aim: Studing the dynamics (Knowing the position and velocity at instant
time t) of the plasma

Models: Depending on the density of charged particles, a plasma behaves
either as a fluid, with collective effects being dominant, or as a collection of
individual particles.

I- Single-particle model.

II- Kinetic model.

III- Fluid model.

elkamashi@gmail.com (MU) Plasma modeling February 29, 2020 2 / 25



Introduction

Defination: a special class of gases made up of a large number of electrons
and ionized atoms and molecules, in addition to neutral atoms and molecules
as are present in a normal (non-ionized) gas.

Aim: Studing the dynamics (Knowing the position and velocity at instant
time t) of the plasma

Models: Depending on the density of charged particles, a plasma behaves
either as a fluid, with collective effects being dominant, or as a collection of
individual particles.

I- Single-particle model.

II- Kinetic model.

III- Fluid model.

elkamashi@gmail.com (MU) Plasma modeling February 29, 2020 2 / 25



Single Particle model #1

Limitation:
I- Unmagnetized plasma: In rarefied plasmas, the charged particles do not
interact with one another and their motions do not constitute a large enough
current to significantly affect the electromagnetic fields.
II- In magnetized plasmas under the influence of an external static or slowly
varying magnetic field the single-particle approach is only applicable if the
external magnetic field is quite strong compared to the magnetic field
produced by the electric current arising from the particle motions.

Applications:
1- investigating high-energy particles in the Earth’s radiation belts and the
solar corona, and also in practical devices such as cathode ray tubes and
traveling-wave amplifiers.
2- understanding the individual particle motions is also an important first step
in understanding the collective behavior of plasmas.
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Single Particle model #2

The plasma is a collection of charged particles. So in order to study various
physical phenomena inside the plasma, we have to solve the equations of
motion:

dri
dt

= vi , (1)

mi
dvi

dt
= F, (2)

for each particle.

Where the position vector r is given by

r = xx + yy + zz. (3)

and the velcoity vector v is given by

v = vxx + vyy + vzz. (4)

F is the combined influence forced, due to the externally applied forces and
the internal forces generated by all the other plasma particles.
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Single Particle model #3

Example (for single particle i = 1): F = qE + qv × B.

With only a magnetic field present (E = 0,B = B0z): The movement of
charged particles is restricted to circular motion known as gyration in a
direction perpendicular to the magnetic field plus uninhibited motion along
the magnetic field.

The addition of a static electric field (E = E0x,B = B0z): Particles with both
positive and negative charges to drift in a direction perpendicular to both the
magnetic and the electric fields.
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Single Particle model #4

Comments:

If the plasma consists of N particles, we need to solve 6N coupled nonlinear
differential equation simultaneously.

Hence, it will be an impossible task to solve this problem analytically and it
will be waste of time and money computationally.

Furthermore, in order to explain and predict the macroscopic phenomena
observed in nature and in the laboratory, we do not need to know the detailed
individual motion each particle, since the observable macroscopic properties
of a plasma are due to the average collective behavior of a large number of
particles.

Hence, we need a more simplified model to describe the dynamical behaviour
of the plasma.
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Kinetic model #1

Our examination of single-particle behavior provided our first insight into
plasma behavior.

Furthermore, the parameters modeled in single-particle analyses (e.g., particle
position and velocity) are in general not measurable and cannot be related to
observations.

The measurable quantities, such as the bulk plasma velocity and particle
density, cannot easily be derived from the single-particle parameters, the
dependencies on which are rather complicated.

There is thus a practical need to describe the behavior of large quantities of
particles and it is necessary to first have a description of the particle
population.

A plasma is a system containing a very large number of interacting charged
particles, so that for its analysis it is appropriate and convenient to use a
statistical approach to describe the positions and velocities of plasma
particles using a probability distribution function.

Describing a plasma using a distribution function is known as plasma kinetic
theory.
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Kinetic model #2

Configuration space r: the location of each particle is documented by a
position vector r drawn from the origin to the physical point at which the
particle resides. In other words, we have

r = xx + yy + zz. (5)

We consider a small elemental volume dr = dxdydz , also denoted as d3r .
Note that the volume element dr must be large enough to contain a great
number of particles, but small enough so that macroscopic quantities such as
pressure, temperature, and velocity vary only slightly within this element.
Velocity space v: the location of the particle in this velocity space and it is
given by:

v = vxx + vyy + vzz. (6)

In analogy with configuration space, we think of the components vx , vy , andvz
as being coordinates in velocity space.
Phase space: defined by the six coordinates x , y , z , vx , vy , and vz . Thus, the
position r and the velocity v of a particle at any given time can be
represented as a point in this six-dimensional space.
Velocity distribution function fs(t, r, v): the density of particles at the
point (r, v) in the six-dimensional phase space at the time t.
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Kinetic model #3

Since the plasma contains a very large number of particles, in order to
describe the macroscopic phenomena of the plasma, we need only to know
the distribution function of the particle fs(t, r, v).

Hence, the evolution of the distribution function fs in six-dimensional phase
space (3 space + 3 velocity coordinates) can be described by

dfs(t, r, v)

dt
=

(
∂fs
∂t

)
coll

, (7)

which is a plasma kinetic equation. Equation (7) can be understood as a
continuity equation in the phase space, where

I- If
(
∂fs
∂t

)
coll

> 0: Ionization.

II- If
(
∂fs
∂t

)
coll

< 0: Recombination. III- If
(
∂fs
∂t

)
coll

< 0: attachement.

Most expressions for
(
∂fs
∂t

)
coll

involve integral functionals of f itself, so that
Eq. (7) is actually an integro-differential equation.
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Kinetic model #4

Convective derivative: Observation of a change in any property associated
with the mobile fluid element can result either from the property changing in
time at fixed position or from the fluid element moving into a region where
the property is different. For example the total change of the property A
experienced by the fluid element in 1D as

dA(t, x)

dt
=
∂A

∂t
+

dx

dt

∂A

∂x
=
∂A

∂t
+ vx

∂A

∂x
(8)

where the last term on the right-hand side represents changes in A
experienced by the fluid element as a result of movement into spatial regions
where A is different.
Generalizing the expression to three dimensions, we can express the
convective derivative as

dA(t, r)

dt
=
∂A

∂t
+ (v · ∇)A (9)

So, the total derivative of the distribution function in phase space can be
written as

dfs(t, r, v)

dt
=

[
∂

∂t
+ v · ∇r +

F

ms
· ∇v

]
fs(t, r, v) (10)

elkamashi@gmail.com (MU) Plasma modeling February 29, 2020 10 / 25



Kinetic model #5

where

∇r =
∂

∂x
x +

∂

∂y
y +

∂

∂z
z, (11)

∇v =
∂

∂vx
x +

∂

∂vy
y +

∂

∂vz
z, (12)

are the gradient operator in three-dimensional configuration and velocity
coordinates.
So that the second and third terms in Eq. (7) are:[

v · ∇r

]
fs(t, r, v) = vx

∂fs
∂x

x + vy
∂fs
∂y

y + vz
∂fs
∂z

z, (13)[
F

ms
· ∇v

]
fs(t, r, v) =

Fx

ms

∂fs
∂vx

x +
Fy

ms

∂fs
∂vy

y +
Fz

ms

∂fs
∂vz

z. (14)

So,the three-dimensional plasma kinetic equation becomes:[
∂

∂t
+ v · ∇r +

F

ms
· ∇v

]
fs(t, r, v) =

(
∂fs
∂t

)
coll

(15)
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Kinetic model #6

Special cases:

I- If
(
∂fs
∂t

)
coll

= C (fs): It is called ’Boltzmann’ equation, where C (fs) is the
Coloumb collision operator.

II- If
(
∂fs
∂t

)
coll

= FP(fs): It is called ’Fokker-Plank’ equation, where FP(fs) is
the FP collision operator.

III- If
(
∂fs
∂t

)
coll

= 0: It is called ’Vlasov’ equation. Thus the ’Vlasov’
equation (7) can be simply stated as

dfs
dt

= 0, (16)

i.e., the total derivative of the distribution function f is always zero for a
collisionless assembly of particles. In other words, as a particle moves around
in phase space, it sees a constant f in its local frame. This fundamental
result is known as Liouville’s theorem.
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Kinetic model #7

Comments:
The velocity distribution function representation of a plasma retains the full
statistical information on all of the particles and hence is a microscopic
description.
The measurable or macroscopic (i.e., ensemble average) values of various
plasma parameters (e.g., density, flux, current) can be can easily be derived
from the moments of distribution function fs(t, r, v).
For example: The total number N(t, r)dr of velocity points in the entire
velocity space, is given by

N(t, r) =

∫ ∞
−∞

f (t, r, v)dv =

∫ ∫ ∫ ∞
−∞

f (t, r, v)dvxdvydvz . (17)

The mean plasma velocity or “fluid” velocity is

u(t, r) =< v(t, r, v) >=

∫ ∞
−∞

v(t, r, v)f (t, r, v)dv. (18)

Consider any property g(r, v, t) of a particle. The value of this quantity
averaged over all velocities is then given by

gav (t, r) =< g(t, r, v) >=
1

N(t, r)

∫ ∞
−∞

g(t, r, v)f (t, r, v)dv. (19)
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Fluid model #1

Unfortunately, solving the Boltzmann equation is usually not straightforward.

Fortunately, however, we are often not interested in the details of the particle
distribution function but simply need to know the macroscopic quantities
(e.g., number density of particles, mean velocity, etc.) in physical (or
configuration) space.

In other words, we seek the distribution only in order to integrate over it and
obtain the desired macroscopic values.

Under certain assumptions it is not necessary to obtain the actual distribution
function if one is only interested in the macroscopic values. Instead of first
solving the Boltzmann (or Vlasov) equation for the distribution function and
then integrating, it is possible to first take appropriate integrals over the
Boltzmann equation and then solve for the quantities of interest.

This approach is referred to as “taking the moments of the Boltzmann
equation.” The resulting equations are known as the macroscopic transport
equations, and form the foundation of plasma fluid theory.

The basic procedure for deriving macroscopic equations from the Boltzmann
equation involves multiplying it by powers of the velocity vector v and
integrating over velocity space. It is important to realize that in performing
such an integration we intrinsically lose information on the details of the
velocity distribution.



Fluid model #2

The zeroth-order moment: continuity equation
To evaluate the zeroth-order moment, we multiply Eq. (7) by v0 = 1 and
integrate to find∫

∂fs
∂t

dv +

∫
(v · ∇r)fsdv +

qs
ms

∫
[(E + v×B) · ∇v]fsdv =

∫ (
∂fs
∂t

)
coll

dv.

(20)
We arrive at the continuity equation for mass or charge transport:

Particle conservation
∂Ns(t, r)

∂t
+∇ · [Ns(t, r)us(t, r)] = 0. (21)

In this context, the first term represents the rate of change of particle
concentration within the volume, while the second term represents the
divergence of particles or the flow of particles out of the volume and these
two processes must balance under the stated assumption that no new
particles are created or destroyed.
In the presence of collisions, a more general version of the continuity

∂Ns

∂t
+∇ · [Nsus ] = −αN2

s − νaNs + νiNs . (22)

where α is the recombination rate, νa is the attachment rate, and νi is the
ionization rate.



Fluid model #3

The first-order moment: momentum transport equation
The first-order moment of the Boltzmann equation is obtained by multiplying
Eq. (7) by mv and integrating to find

ms

∫
v
∂fs
∂t

dv + ms

∫
v(v · ∇r)fsdv + qs

∫
v[(E + v × B) · ∇v]fsdv = ms

∫
v

(
∂fs
∂t

)
coll

dv.

(23)

we can derive the final version of the momentum transport equation
(force balance):

msNs

[
∂

∂t
+ us · ∇

]
us = qsNs

(
E + us × B

)
−∇ ·Ψs +∇ ·Πs + Rij ,

(24)

The first term in right hand side (R.H.S) represents the Lorentz force density,
while the second term ∇ ·Ψs is the pressure tensor force density, third term
∇.Π is the viscous force density and the last term Rij is the frictional force
due to Coulomb collisions between species.

If the distribution function is isotropic, then ∇ ·Ψs = ∇Ps , where P is the
scalar pressure..



Fluid model #4

The second-order moment: energy transport equation
The second-order moment of the Boltzmann equation, i.e., the equation of
energy conservation, is obtained by multiplying Eq. (7) by 1/2mv2 and
integrating over velocity space,

1

2
ms

∫
v2 ∂fs
∂t

dv +
1

2
m

∫
v2(v · ∇r)fsdv +

1

2
qs

∫
v2[(E + v × B) · ∇v]fsdv

=
1

2
ms

∫
v2

(
∂fs
∂t

)
coll

dv. (25)

The energy-conservation equation can be written as:

∂ 3
2Ps

∂t
+∇ · ( 3

2
Pus) = Ps∇ · us +∇ · qs + Rij , (26)

The quantity 3
2Ps represents the flow of energy density at the fluid velocity,

or the macroscopic energy flux.
The first term in R.H.S, Ps∇ · us represents the heating or cooling of the
fluid due to compression or expansion of its volume.
The new quantity qs is the heat-flow (or heat-flux) vector, which represents
microscopic energy flux.
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Fluid model #5

Comments:

We could in principle proceed by evaluating higher and higherorder moments
of the Boltzmann equation.

However, the equations of conservation of particle number, momentum, and
energy are useful in making general statements about plasmas, but they
cannot be considered as a closed system of plasma equations.

But, in calculating each moment of the Boltzmann equation, however, we
always obtained an equation that contained the next moment. In the
zeroth-order moment the change in particle density was expressed as a
function of the mean fluid velocity. In the first-order moment, the change in
mean fluid velocity was expressed as a function of the pressure tensor. The
second-order moment is an expression for the change in the pressure tensor,
but brings in a new heat-flow term.

Every time we obtain a new equation a new unknown appears, so that the
number of equations is never sufficient for the determination of all the
macroscopic quantities. The number of unknowns always exceeds the number
of equations.

Because of this, it is necessary to truncate the system of equations at some
point in the hierarchy of moments by making simplifying assumptions
(closures).



Fluid model #6

Complete set of Multiple-fluid equations:

∂Ns

∂t
+∇ · [Nsus ] = 0, (27)

msNs

[
∂

∂t
+ us · ∇

]
us = qsNs

(
E + us × B

)
−∇Ps +∇ ·Πs + Rij (28)

For self-consistent treatment of a problem, the electric E and magnetic field
B are determined by using Maxwell’s equations:

Gauss’ Law ∇ · E =
ρq
ε0
, (29)

Gauss’ Law ∇ · B = 0, (30)

Faraday’s Law ∇× E = −∂B

∂t
(31)

Ampére’s Law ∇× B = µ0J + µ0ε0
∂E

∂t
, (32)

where

The charge density ρq =
∑

qsNs , (33)

The current density J =
∑

qsNsus (34)



Fluid model #7

As we can see from Maxwell’s equations that the plasma is coupled with the
electromagnetic field in Maxwell’s equation through ρq and J.

The plasma pressure density P can be determined by using the equation of
state which is a relation between the pressure, plasma density and plasma
temperature. For example:
- Cold state: P = 0.
- Isothermal state: Ps = KBNsTs holds for relatively slow time variations,
where the plasma fluid can exchange energy with its surroundings allowing
temperatures to reach equilibrium.
- Adiabatic state: Ps = CsN

γ
s holds for fast time variations, as in the case

of plasma waves, when the plasma fluid does not exchange energy with its
surroundings.
where C is a constant and γ is the ratio of specific heat at constant pressure
to that at constant volume. Typically, γ = 1 + 2/nd , where nd is the number
of degrees of freedom.

The frictional forces Rij = −
∑

j mNjνij(ui − uj), represents the total
momentum transferred (gained) by species i via its collisions with species j ,
where νij is the collision frequency between particles of type i and j .

Also, the viscous force density ∇.Π = msNsη∇2us where η is the kinematic
viscosity coefficient.



Fluid model #8

Validity of the fluid model.:

The fluid model describes a weakly coupled plasma system.

This means that the average binding energy must be very small compared to
the thermal energy.

The classical coupling parameter represents the ratio of the average Coulomb
potential energy to the average kinetic or thermal energy, i.e. ΓC = EC

Eth
,

where EC is the Coulomb potential energy and Eth is the thermal energy.
Consequently, the coupling parameter must be much less than 1, i.e.
ΓC � 1, to apply a fluid model to describe plasma problems.



Fluid model #8

Single-fluid theory of plasmas:magnetohydrodynamics:

A multiple-fluid description of a plasma was introduced, in which electrons
and various species of ions were governed by separate continuity and force
equations.

However, under certain conditions it is appropriate to consider the entire
plasma population as a single fluid without differentiating between ions or
even between ions and electrons.

This approach, known as magnetohydrodynamics (abbreviated MHD), is
appropriate model for low-frequency phenomena when the plasma is highly
conductive and dense.

A key requirement for applicability of the single-fluid approach is that the
various plasma species are forced to act in unison under the influence of
either frequent collisions or a strong magnetic field.



Fluid model #9

Simplified MHD equations:

∂ρm
∂t

+∇ · (ρmum) = 0, (35)

ρm
∂um
∂t

= −∇P + J× B (36)

For self-consistent treatment of a problem, the electric E and magnetic field
B are determined by using Maxwell’s equations:

∇ · E = 0, ∇ · B = 0, (37)

∇× E = −∂B

∂t
, ∇× B = µ0J, (38)

where

The mass density ρm =
∑

msNs , (39)

The electric current density J =
∑

qsNsus , (40)

The mass current density Jm =
∑

msNsus , (41)

The mass velcoity um =
∑ Jm

ρm
, (42)

(43)
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Springer-Verlag, 2004).
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Thanks for your attention!
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