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Plasma response

When the charge density in the plasma is perturbed by small but finite
perturbation where the nonlinear effects are negligible, the plasma responds
differently depending on the characteristic frequency of the perturbations. Plasma
response to an applied perturbation can be in the form of shielding and
oscillations or waves.

Low frequency (shielding). If the characteristic frequency of the perturbation
is low, i.e. ω � kVthi , kVthe , the plasma electrons, and ions respond
isothermally (Maxwellian’s distribution function). Then, we obtain the Debye
shielding effect as in the preceding section.

Intermediate frequency (Waves). As the characteristic frequency of the
perturbations (ω) increases, the inertia of the charged particles becomes
important. If kVthi � ω � kVthe , the electrons and the ions have an inertial
adiabatic response .

High frequency (Oscillations). For high frequency, i.e. ω � kVthi , kVthe ,
both electrons, and ions exhibit an inertial or adiabatic response. Then, the
plasma responds by oscillating at a collectively determined frequency called
the plasma frequency or Langmuir oscillation frequency ωp.



Wavelike response

When the perturbation is:
- Periodic
- Small amplitude
- Unbounded
- Homogenous
- Time-independent
the waveform is generally sinusoidal; and there is only one component. This
is the situation we shall consider.
Any sinusoidally oscillating quantity—say, the density n—can be represented
as follows:

f = f0e
i(k·r−ωt) (1)

where, in Cartesian coordinates, k · r = kxx + kyy + kzz. Here f0 is a constant
defining the amplitude of the wave, and k is called the propagation constant.
A point of constant phase on the wave moves so that d

dt (kx − ωt) = 0 or

dx

dt
=
ω

k
= vph (2)

This is called the phase velocity. If ω
k is positive, the wave moves to the

right; that is, x increases as t increases, so as to keep kx − ωt constant. If ω
k

is negative, the wave moves to the left.
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Dispersive medium & Dispersion relation

The dispersive medium: The medium in which the velocity depends on
frequency and wavenumber.
A point of constant phase on the wave envelope moves so that
d
dt (δkx −∆ωt) = 0 or

dx

dt
=

∆ω

∆k
= vg (3)

This is called the group velocity, the velocity with which energy or
information can travel.
The dispersion relation: a relationship between the wave number k and the
wave frequency ω.

vg =
d

dk
(kvph), (4)

= vph − λ
dvph
dλ

(5)

The types of medium:
- The normal dispersion: if

dvph
dλ > 0, vg < vph.

- The anomalous dispersion: if
dvph
dλ < 0, vg > vph.

- The nondispersive: if
dvph
dλ = 0, vg = vph.
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Waves in plasma

Electrostatic Waves:
- Longitudinal: E//k.
- Zero current density: J =.
- Unperturbed magnetic field: B = 0.
- Plasma beta: β = P

B2

2µ0

� 1.

- The wave action (i.e., the generation of one quantity by the other and vice
versa) in such waves is between the fluid velocity u and electric field E.

Electromagnetic Waves:
- Transverse: E ⊥ B ⊥ k.
- The wave action: is between the fluid velocity E and electric field B.

Hydrodynamic Waves:
- Longitudinal and Transverse.
- Ideal MHD: Infinite conductivity σ →∞.
- Infinite current density: J→∞.
- Zero electric field E = 0.
- magnetized B0 6= 0.
- Low frequency wave: ω � ωci , Inertialess electrons
- The wave action: is between the fluid velocity u and electric field B.
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Response model

Complete set of Multiple-fluid equations:

∂Ns

∂t
+∇ · [Nsus ] = 0, (6)

msNs

[
∂

∂t
+ us · ∇

]
us = qsNs

(
E + us × B

)
−∇Ps +∇ ·Πs + Rij (7)

For self-consistent treatment of a problem, the electric E and magnetic field
B are determined by using Maxwell’s equations:

Gauss’ Law ∇ · E =
ρq
ε0
, (8)

Gauss’ Law ∇ · B = 0, (9)

Faraday’s Law ∇× E = −∂B

∂t
(10)

Ampére’s Law ∇× B = µ0J + µ0ε0
∂E

∂t
, (11)

where

The charge density ρq =
∑

qsNs , (12)

The current density J =
∑

qsNsus (13)



Electromagnetic waves

Transverse perturbation: E ⊥ B ⊥ k.
The wave action: is between the fluid velocity E and electric field B.
High frequency: Electrons are inertial, Ions are stationary.
From Maxell’s Eqs, we get:

k(k.E)− k2E +
ω2

c2
←→ε p.E = 0 (14)

where ←→ε p.E = J
jωε0

+ E.

The general dispersion relation (Appleton–Hartree equation):

µ2 =
k2c2

ω2
= 1−

(ω2
p/ω

2
c )

1− ω2
cSin

2θ
2(ω2−ω2

p) ±
[(

ω2
cSin

2θ
2(ω2−ω2

p)

)2

+
ω2

c

ω2 Cos2θ

]1/2
(15)



Electromagnetic waves

Parallel propagation (θ = 0) or along B0: The disperson relation becomes

µ2 =
k2c2

ω2
= 1−

ω2
p

ω(ω ± ωc)
(16)

This dispersion relation has two branches (+,-).

The lower (-) branch:

µ2 =
k2c2

ω2
= 1−

ω2
p

ω(ω − ωc)
(R wave) (17)

It is called the whistler mode, the electron-cyclotron mode and the right hand
circularly polarized mode.

The upper (+) branch:

µ2 =
k2c2

ω2
= 1−

ω2
p

ω(ω + ωc)
, (L wave) (18)

It is called the left hand circularly polarized mode.

The electric field vector for the R wave rotates clockwise in time as viewed
along the direction of B0, and vice versa for the L wave.



Electromagnetic waves

A cutoff occurs in a plasma when the index of refraction goes to zero; that is,
when the wavelength becomes infinite, since ≈ µ = kc

ω .
A resonance occurs when the index of refraction becomes infinite; that is,
when the wavelength becomes zero.
Cuttoffs (k → 0) & Resonances (k →∞).

(a) (b)



Electromagnetic waves

Perpendicular propagation (θ = π/2) or across B0: The disperson relation
becomes

µ2 =
k2c2

ω2
= 1−

(ω2
p/ω

2
c )

1− ω2
cSin

2θ
2(ω2−ω2

p) ±
ω2

cSin
2θ

2(ω2−ω2
p)

(19)

The upper (+) branch (E//B0):

ω2 = ω2
p + c2k2 (O wave) (20)

The mode is called the ordinary mode, since its propagation is not affected by
the magnetic field. This means that this wave has the same properties as the
transverse electromagnetic wave in a non-magnetized plasma (B0 = 0) with
u//E.

The lower (-) branch (E ⊥ B0):

µ2 =
k2c2

ω2
= 1−

ω2
p

ω2

ω2 − ω2
p

ω2 − ω2
H

(21)

where ω2
H = ω2

p + ω2
c is called is the upper hybrid frequency.

The mode is called the extraordinary mode. The electric field for this mode is
perpendicular to B0, with Ex and Ey coupled together.



Electromagnetic waves

Cuttoffs (k → 0), we get

ωR =
1

2

[
(ω2

c + 4ω2
p)1/2 + ωc

]
(22)

ωL =
1

2

[
(ω2

c + 4ω2
p)1/2ωc

]
(23)

& Resonances (k →∞), we get

ω2 = ω2
H + ω2

c + ω2
p. (24)

(c) (d)



Hydrodynamic waves

Hydrodynamic Waves:
- Longitudinal and Transverse.
- Ideal MHD: Infinite conductivity σ →∞.
- Infinite current density: J→∞.
- Zero electric field E′ = E + um × B = 0.
- magnetized B0 6= 0.
- Low frequency wave: ω � ωci , Inertialess electrons
- The wave action: is between the fluid velocity u and electric field B.
our desired dispersion relation (the plasma response to the perturbation) is
given by:
Linearized ideal MHD equations:

∂ρm
∂t

+ ρm0∇ · [um] = 0, (25)

ρm0
∂um
∂t

= −∇(P +
B0 · B
µ0

) +
(B0 · ∇)B

µ0
(26)

For self-consistent, Maxwell’s equations:

∇ · E = 0, ∇ · B = 0, (27)

∂B

∂t
= ∇× (um × B0), ∇× B = µ0J, (28)

where

The mass density ρm =
∑

msNs , (29)

The electric current density J =
∑

qsNsus , (30)

The mass current density Jm =
∑

msNsus , (31)

The mass velcoity um =
∑ Jm

ρm
, (32)

(33)



Hydrodynamic waves

The perturbed quantities can given by:

ρm = ρ0
k · um

ω
(34)

P = ΓP0
k · um

ω
(35)

B =
(k · um)B0 − (k · B0)m

ω
(36)

our desired dispersion relation (the plasma response to the perturbation) is
given by:

(ω2 − kc2
A cos2(θ))

[
ω4 − ω2k2(c2

A + c2
s ) + k4c2

Ac
2
s cos2(θ)

]
= 0 (37)

which clearly has the roots from highest to lowest frequencies

ω2
1 = k2V 2

+ ≈ 106/s, (38)

ω2
2 = c2

Ak
2 cos2(θ) ≈ 105/s, (39)

ω2
3 = k2V 2

− ≈ 104/s. (40)

where V± =

(
1
2

[
c2
A + c2

s ±
√

(c2
A + c2

s )− c2
Ac

2
s cos2(θ)

])1/2



Hydrodynamic waves

Fast magnetosonic (compressional Alfven) waves (k ⊥ B0): the dispersion
relation

ω2
1 = k2V 2

+. (41)

The acoustic speed cs =
√

ΓP0

ρ0
=
√

Γ(Te+Ti )
mi

.

The Alfven speed cA = B0√
µ0ρ0

.

Compressible ∇ · u 6= 0.
Perpendicular (k ⊥ B0).
The perturbation compress or expand the density of the magnetic field lines
or the magnetic field strength.
Simultaneously, they compress or expand the pressure.

(e) (f)



Hydrodynamic waves

Shear or torsional waves (arbitrary k|| and k⊥): the dispersion relation

ω2
2 = c2

Ak
2 cos θ2. (42)

k · um = 0 and k · B0 = 0
parallel (k//B0).
The perturbation bends, shear or twist the density of the magnetic field lines
but doesn’t change the magnetic field strength.
It doesn’t produce pressure or mass density perturbation.

(g) (h)



Hydrodynamic waves

Slow magnetosonic (Acoustic wave) waves (k ⊥ B0): the dispersion relation

ω2
3 = k2V 2

− (43)

Regular sound waves that propagate ”freely” along the magnetic field lines
B0.
Compressible ∇ · u 6= 0.
parallel (k//B0).
The perturbation compress ∇ · u < 0 or expand ∇ · u > 0 the pressure or the
mass density.
Doesn’t change the magnetic field strength.

(i) (j)



Hydrodynamic waves

The distinction between the fast and slow waves can be further understood
by comparing the signs of the wave induced fluctuations in the plasma and
magnetic pressures: p and B0 · B/µ0:

B0 · B
µ0

=
c2
A

c2
s

(
1− c2

s cos2(θ)

V 2

)
P (44)

where V = ω
k is the phase velcoity.

If V = V+ > cS cos θ, we get p and B0 · B/µ0 have the same sign.

Thus, in the fast magnetosonic wave the pressure and magnetic energy
fluctuations reinforce one another.

If V = V− < cS cos θ, we get p and B0 · B/µ0 have the opposite sign.

Thus, in the slow magnetosonic wave the pressure and magnetic energy
fluctuations oppose one another.



Summery

Hydrodynamic waves: Transverse, Low frequency, Ion waves.

- Along B0: Shear Alfven and Slow magnetosonic wave.

- Across B0: Fast magnetosonic wave.

Electromagnetic waves: Transverse, High frequency, electron waves.

- Along B0: right-hand (R) and left-hand (L) circularly polarized wave.

- Across B0 : plane-polarized wave (O-wave, E//B0) and elliptically polarized
wave (X-wave, E ⊥ B0).



Thanks for your attention!
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