Solar Wind : Understanding Sun's Breath

Presented by Nora Ahmed El-Shafeay

PhD, Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo, Egypt

10th Spring Plasma School at Port Said (SPSP 2025), Port Said, Egypt.

Outlines

Introduction

- Sun (Composition and Structure)
- Solar Wind
- Solar wind (Origin and Features)
- Distance and temperature scale
- Historical Milestones in Solar corona
- Magnetic Reconnection
- Interaction with solar system
- Solar wind consequences Aurora Borealis Artificial orbits damage Power grid damage

Introduction

Layers of the Sun

Solar Corona

- Definition: the outermost layer of hot plasma that surrounds the sun.
- Composition: electrons,
 protons, Helium, heavy
 elements.
- Temperature: $1-3 \times 10^6$ K.

Solar wind

- What is the Solar Wind?
- Continuous flow of \bullet some coronal plasma (charged particles) expands into interplanetary space. Composed of electrons, protons, and alpha particles. Key characteristics at • 1 Au: velocity (300-800 km/s) and density (1 - 10)narticles/cm³)

Temperature Profile

 1859: Carrington noticed that the solar flares are followed by geomagnetic storms.

 1859: Carrington noticed that the solar flares are followed by geomagnetic storms.

 1869: Young discovered a 530 nm emission line from corona emissions → 'Coronium" element

• 1859: Carrington noticed that the solar flares are followed by geomagnetic storms.

- 1869: Young discovered a 530 nm emission line from corona emissions → 'Coronium" element
- 1943: Elden used QMT→emission line due to unusual high ionized iron (1 × 10⁶ K)

- 1859: Carrington noticed that the solar flares are followed by geomagnetic storms.
- 1869: Young discovered a 530 nm emission line from corona emissions → 'Coronium" element
- 1943: Elden used QMT→emission line due to unusual high ionized iron (1 × 10⁶ K)
- Spectroscopy revealed that the corona is so hot.

Evidences for Solar Wind #1

- Late 1800s → early 1900s: evidence kept accumulating for *something* out there that connects the Sun and the Earth together.
- I'll summarize 3 pieces of circumstantial evidence that Parker (1958) had in-hand...
- First, after the "Carrington event" (Sept. 1, 1859), there was increased awareness that there's some kind of cause-and-effect between events on the Sun & events on Earth.

A. STORM, OF ELECTRICITY

TELEGRAPH WIRES USELESS FOR SEVERAL HOURS.

ONE OF THE MOST SEVERE DISTURBANCES FOR MANY YEARS, EXTENDING EVEN TO EUROPE-TELEPHONE WIRES ALSO OB-STRUCTED-BUSINESS DELAYED & GOOD PART OF THE DAY.

Evidences for Solar Wind #2

- Second piece of evidence: many comets have dust tails (whose ejecta fall back along ballistic orbits) and ion tails (always oriented away from the Sun).
- Biermann (1951) also analyzed the kinematics of ion-tail inhomogeneities, which can be tracked to flow away from the Sun at speeds of a few × 100 km/s.

Kometenschweife und solare Korpuskularstrahlung

(Comet tails and solar corpuscular radiation)

Evidences for Solar Wind #3

- Third piece of evidence: the existence of the hot (10⁶ K) corona was well known, but if the corona was assumed to exist in a state of hydrostatic equilibrium, it gives a nonsensical answer for the gas pressure.
- For Chapman's (1957) heat conduction model,

$$T(r) = T_0 \left(\frac{r_0}{r}\right)^{2/7} \quad \text{and as } r \to \infty, \quad P \to P_0 \exp\left[-\left(\frac{V_{\text{esc},0}}{c_{s,0}}\right)^2\right] \approx 10^{-5} \text{ dynes/cm}^2$$

- However, by the 1950s, astronomers already knew typical gas pressures in the local interstellar medium were only 10⁻¹⁴ to 10⁻¹² dynes/cm².
- If such a huge pressure difference were to exist, the pressure-gradient force would cause the corona to expand (explosively?) out to huge distances (parsecs?) before coming into equilibrium with the interstellar medium.
- If a new hydrostatic equilibrium was established, the near-Sun corona wouldn't look anything like it does now...
 - Something about this doesn't make sense.

Existence for Solar Wind #1

 Parker (1958) showed that if the corona is hot it must expand.

Existence for Solar Wind #2

Parker (1958) showed that if the corona is hot it must expand.

After 4 years of controversy, Neugebauer et al. (1962) used in-situ space probe data to confirm the

 It's observable with a coronagraph (i.e., telescope with an occulter to generate "artificial eclipses") –

Large-scale coronal structure Sunsposts (dark in visible)

Large-scale coronal structure Active regions (brightest in UV&X-ray)

Large-scale coronal structure

Active regions (brightest in UV & X-ray) tend to coincide with sunspots (dark in visible):

Some isolated **coronal loops** aren't associated with active regions...

When active regions get ready to flare, the underlying B-field twist is observable as "sigmoid" X-ray loops:

Large-scale coronal structure

Coronal holes have low density (dark in UV/X-ray) & coincide with solar wind footpoints

Fuzzy regions with intermediate intensity are often called Quiet Sun

Some "pseudostreamers" are associated with more complex polarities & dark prominence cavities...

Open vs closed magnetic field

B large enough to restrict plasma motion: only along field lines

Different coronae from different magnetic topology: open vs. closed

outflow

heat in

Magnetic Reconnection

Interaction with solar system

Solar wind interaction with Earth

Solar wind interaction with Earth

SW interaction with Venus

SW interaction with

Interaction between SW and ionospheres

Wave (soliton, IAWs, rogue,...)

Ionic escape

Interaction between SW and ionospheres

lonic escape

Wake potential

• Test charge particles

Northern lights (Aurora borealis)

Northern lights (Aurora borealis)

Solar wind vs. satellite

Solar wind vs. Power grid

